Efficient Way To Do The Pandas Dataframe Column Lookup
I have the following dataframe: +-------------------------------------------+----------------------------------------+----------------+----------------------------------+ |
Solution 1:
Solution tested with missing values in some column(s), but in Lookup
are not NaNs or Nones:
df = pd.concat([df[x].str.split(',', expand=True).stack() for x in df.columns], axis=1, keys=df.columns)
df = df.reset_index(level=1, drop=True).set_index('Lookup', append=True).unstack().sort_index(axis=1, level=1)
df.columns = [f'{b}_{a}' for a, b in df.columns]
Idea is split each value in loop, explode for Series and concat together, last reshape by stack
:
df = pd.concat([df[x].str.split(',').explode() for x in df.columns], axis=1)
df = df.set_index('Lookup', append=True).unstack().sort_index(axis=1, level=1)
df.columns = [f'{b}_{a}'for a, b in df.columns]
print (df)
100000_LookUp Value 1 100000_LookUp Value 2 100000_LookUp Value 3 \
0 -1820 1 1820
1 -1360 2 4120
1000000_LookUp Value 1 1000000_LookUp Value 2 1000000_LookUp Value 3 \
0 -1820 1 1820
1 -28760 3 31520
200000_LookUp Value 1 200000_LookUp Value 2 200000_LookUp Value 3 \
0 -1820 1 1820
1 -1360 2 4120
300000_LookUp Value 1 300000_LookUp Value 2 300000_LookUp Value 3 \
0 -1820 1 1820
1 -28760 3 31520
50000_LookUp Value 1 50000_LookUp Value 2 50000_LookUp Value 3 \
0 -1820 1 1820
1 -1360 2 4120
500000_LookUp Value 1 500000_LookUp Value 2 500000_LookUp Value 3
0 -1820 1 1820
1 -28760 3 31520
Solution 2:
At the core, you can use groupby
very well to achieve your goal:
grouped = df.groupby("Lookup")
This is now a dict-like object that has the values you want for every Lookup value in separate dataframes. The question now is how we get it back together again, and here I have to resort to a quite hacky method. I'm sure there are better ones, but this one does produce a nice result.
dflist = []
keylist = []
basecols = df.columns[1:]
for key, df in grouped.__iter__():
keylist.append(key)
dflist.append(df[basecols].reset_index(drop=True)
result = pd.concat(dflist, axis=1)
resultcolumns = pd.MultiIndex.from_product([keylist, basecols])
result.columns = resultcolumns
This produces a MultiIndexed DataFrame with the result you described.
Output:
>> result
500001000002000003000005000001000000
Value1 Value2 Value3 Value1 Value2 Value3 Value1 Value2 Value3 Value1 Value2 Value3 Value1 Value2 Value3 Value1 Value2 Value3
0 -182011820 -182011820 -182011820 -182011820 -182011820 -1820118201 -136024120 -136024120 -136024120 -28760331520 -28760331520 -28760331520
Post a Comment for "Efficient Way To Do The Pandas Dataframe Column Lookup"