Distance Between A Point And A Curve In Python
I have several points and a curve discribed as two lists including positions. I try to get the list of differences between the points and the curves. I tried to follow this web, bu
Solution 1:
The script you found is meant for a known function f(x) but IIUC you don't know f(x): your curve is only defined by the coordinates (x,y) and you don't know f(x) so that y=f(x).
In this case, you can use the same basics.
Given a point P
and a curve defined by the coordinates (x,y), the distance between the point P and a point of the curve can be simply defined by
that we wish to minimize, i.e. find the minimum/a in the defined domain.
For example
import numpy as np
import matplotlib.pyplot as plt
# Here I define a function f(x) to# generate y coordinates, but let us# suppose we don't know it and that# we got only x and ydeff(x):
return np.cbrt( np.exp(2*x) -1 )
# This is what we really got
x = np.linspace(-2, 2, 1000)
y = f(x)
# The point P
P = (.5, .5)
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(x, y, lw=4)
ax.plot(*P, 'or')
ax.text(
P[0], P[1],
f" P ({P[0]}, {P[1]})",
ha='left', va='center',
fontsize=15
)
ax.set(
xlim=(-2, 2),
ylim=(-2, 2),
)
plt.show()
Let us define the function d, the distance between a point P and the curve
def distance(x, y, x0, y0):
d_x = x - x0
d_y = y - y0
dis = np.sqrt( d_x**2 + d_y**2 )
return dis
and now compute d between the given P and (x,y) and find the minimum
from scipy.signal import argrelmin
# compute distance
dis = distance(x, y, P[0], P[1])
# find the minima
min_idxs = argrelmin(dis)[0]
# take the minimum
glob_min_idx = min_idxs[np.argmin(dis[min_idxs])]
# coordinates and distance
min_x = x[glob_min_idx]
min_y = y[glob_min_idx]
min_d = dis[glob_min_idx]
and plot results
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(x, y, lw=4)
ax.plot(
[P[0], min_x],
[P[1], min_y],
'k--', lw=1,
label=f'distance {min_d:.2f}'
)
ax.plot(*P, 'or')
ax.text(
P[0], P[1],
f" P ({P[0]}, {P[1]})",
ha='left', va='center',
fontsize=15
)
ax.set(
xlim=(-2, 2),
ylim=(-2, 2),
)
ax.legend()
plt.show()
EDIT
Improving, it can be defined a simple function to return all minimum distances, for example
import numpy as np
import matplotlib.pyplot as plt
defdistance(x, y, x0, y0):
"""
Return distance between point
P[x0,y0] and a curve (x,y)
"""
d_x = x - x0
d_y = y - y0
dis = np.sqrt( d_x**2 + d_y**2 )
return dis
defmin_distance(x, y, P, precision=5):
"""
Compute minimum/a distance/s between
a point P[x0,y0] and a curve (x,y)
rounded at `precision`.
ARGS:
x, y (array)
P (tuple)
precision (int)
Returns min indexes and distances array.
"""# compute distance
d = distance(x, y, P[0], P[1])
d = np.round(d, precision)
# find the minima
glob_min_idxs = np.argwhere(d==np.min(d)).ravel()
return glob_min_idxs, d
that works even if there is more than one minimum
def f(x):
return x**2
x = np.linspace(-2, 2, 1000)
y = f(x)
P = (0, 1)
min_idxs, dis = min_distance(x, y, P)
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(x, y, lw=4)
for idx in min_idxs:
ax.plot(
[P[0], x[idx]],
[P[1], y[idx]],
'--', lw=1,
label=f'distance {dis[idx]:.2f}'
)
ax.plot(*P, 'or')
ax.text(
P[0], P[1],
f" P ({P[0]}, {P[1]})",
ha='left', va='center',
fontsize=15
)
ax.set(
xlim=(-2, 2),
ylim=(-1, 3),
)
ax.legend()
plt.show()
def f(x):
return np.sqrt(4 - x**2)
x = np.linspace(-2, 2, 21)
y = f(x)
P = (0, 0)
min_idxs, dis = min_distance(x, y, P)
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(x, y, lw=4)
for idx in min_idxs:
ax.plot(
[P[0], x[idx]],
[P[1], y[idx]],
'--', lw=1,
label=f'distance {dis[idx]:.2f}'
)
ax.plot(*P, 'or')
ax.text(
P[0], P[1],
f" P ({P[0]}, {P[1]})",
ha='left', va='center',
fontsize=15
)
ax.set(
xlim=(-2, 2),
ylim=(-1, 3),
)
ax.legend(loc='upper left', bbox_to_anchor=(1,1))
plt.show()
Post a Comment for "Distance Between A Point And A Curve In Python"