Create A Column Which Increments Value For Changes In Another Row
I have a dataframe with two columns as below: Var1Var2 a 28 b 28 d 28 f 29 f 29 e 30 b 30 m 30 l 30 u 31 t 31 t 31 I'd like to create a third column with v
Solution 1:
You can compare Var2
with its shifted-by-1 version:
v
Var1 Var2
a 0 28
b 1 28
d 2 28
f 3 30
f 4 30
e 5 2
b 6 2
m 7 2
l 8 2
u 9 5
t 10 5
t 11 5
i = v.Var2
v['Var3'] = i.ne(i.shift()).cumsum()
v
Var1 Var2 Var3
a 0 28 1
b 1 28 1
d 2 28 1
f 3 30 2
f 4 30 2
e 5 2 3
b 6 2 3
m 7 2 3
l 8 2 3
u 9 5 4
t 10 5 4
t 11 5 4
Solution 2:
Using category
df.Var2.astype('category').cat.codes.add(1)
Out[525]:
01112132425363738394104114
dtype: int8
Updated
from itertools import groupby
grouped = [list(g) for k, g in groupby(df.Var2.tolist())]
np.repeat(range(len(grouped)),[len(x) for x in grouped])+1
Solution 3:
Something like this:
(df.Var2.diff()!=0).cumsum()
Post a Comment for "Create A Column Which Increments Value For Changes In Another Row"