How To Add Extra Time Into The Time Column With Data Using Python
Here I have a dataset with date, time and one input column. So here my time column is not good. So I want to give time range into that time column. So here first I did I just conve
Solution 1:
Use:
data['date']= pd.to_datetime(data['date'] + " " + data['time'],
format='%d/%m/%Y %H:%M:%S', dayfirst=True)
Subtract firat value of date column and convert to minutes:
data['time1']=data['date'].sub(data.loc[0,'date']).dt.total_seconds()/60print(data)datetimeX3time102018-03-10 06:15:00 6:15:0070.012018-03-10 06:45:00 6:45:00530.022018-03-10 07:45:00 7:45:00790.032018-03-10 09:00:00 9:00:007165.042018-03-10 09:25:00 9:25:007190.052018-03-10 09:30:00 9:30:005195.062018-03-10 11:00:00 11:00:007285.072018-03-10 11:30:00 11:30:007315.082018-03-10 13:30:00 13:30:007435.092018-03-10 13:50:00 13:50:005455.0102018-03-10 15:00:00 15:00:007525.0112018-03-10 15:25:00 15:25:007550.0122018-03-10 16:25:00 16:25:007610.0132018-03-10 18:00:00 18:00:007705.0142018-03-10 19:00:00 19:00:005765.0
Create new 60
range values:
arr = np.arange(0, int(data['time1'].max()), 60)
print (arr)
[ 060120180240300360420480540600660720]
Join together with minute column:
union = np.union1d(data['time1'], arr)
print (union)
[ 0.30.60.90.120.165.180.190.195.240.285.300.315.360.420.435.455.480.525.540.550.600.610.660.705.720.765.]
Create index by time1
column and DataFrame.reindex
- added new values from arr
:
data = data.set_index('time1')['X3'].reindex(union, fill_value=0).reset_index()
print (data)
time1 X3
00.07130.05260.00390.074120.005165.076180.007190.078195.059240.0010285.0711300.0012315.0713360.0014420.0015435.0716455.0517480.0018525.0719540.0020550.0721600.0022610.0723660.0024705.0725720.0026765.05
Post a Comment for "How To Add Extra Time Into The Time Column With Data Using Python"