Skip to content Skip to sidebar Skip to footer

Pandas Groupby Sum

I have a dataframe as follows: ref, type, amount 001, foo, 10 001, foo, 5 001, bar, 50 001, bar, 5 001, test, 100 001, test, 90 002, foo, 20 002, foo, 35 002, bar, 75 002, bar, 80

Solution 1:

A solution using pivot table :

>>> b = pd.pivot_table(df, values='amount', index=['ref'], columns=['type'], aggfunc=np.sum)
>>> b
type  bar  foo  test
ref
1      55   15   190
2     155   55   260

>>> pd.merge(df, b, left_on='ref', right_index=True)
    ref  type  amount  bar  foo  test
0     1   foo      10   55   15   190
1     1   foo       5   55   15   190
2     1   bar      50   55   15   190
3     1   bar       5   55   15   190
4     1  test     100   55   15   190
5     1  test      90   55   15   190
6     2   foo      20  155   55   260
7     2   foo      35  155   55   260
8     2   bar      75  155   55   260
9     2   bar      80  155   55   260
10    2  test     150  155   55   260
11    2  test     110  155   55   260

Solution 2:

I think you need groupby with unstack and then merge to original DataFrame:

df1 = df.groupby(['ref','type'])['amount'].sum().unstack().reset_index()
print (df1)
type  ref  bar  foo  test
0     001   55   15   190
1     002  155   55   260

df = pd.merge(df, df1, on='ref')
print (df)
    ref  type  amount  sums  bar  foo  test
0   001   foo      10    15   55   15   190
1   001   foo       5    15   55   15   190
2   001   bar      50    55   55   15   190
3   001   bar       5    55   55   15   190
4   001  test     100   190   55   15   190
5   001  test      90   190   55   15   190
6   002   foo      20    55  155   55   260
7   002   foo      35    55  155   55   260
8   002   bar      75   155  155   55   260
9   002   bar      80   155  155   55   260
10  002  test     150   260  155   55   260
11  002  test     110   260  155   55   260

Timings:

In [506]: %timeit (pd.merge(df, df.groupby(['ref','type'])['amount'].sum().unstack().reset_index(), on='ref'))
100 loops, best of 3: 3.4 ms per loop

In [507]: %timeit (pd.merge(df, pd.pivot_table(df, values='amount', index=['ref'], columns=['type'], aggfunc=np.sum), left_on='ref', right_index=True))
100 loops, best of 3: 4.99 ms per loop

Post a Comment for "Pandas Groupby Sum"