How To Convert A Column Of String To Numerical?
I have this pandas dataframe from a query: | name | event | ---------------------------- | name_1 | event_1 | | name_1 | event_2 | | name_2 | event_
Solution 1:
Some ways of doing it
1)
In [366]: pd.crosstab(df.name, df.event)
Out[366]:
event event_1 event_2
name
name_1 11
name_2 10
2)
In [367]: df.groupby(['name', 'event']).size().unstack(fill_value=0)
Out[367]:
event event_1 event_2
name
name_1 11
name_2 10
3)
In [368]: df.pivot_table(index='name', columns='event', aggfunc=len, fill_value=0)
Out[368]:
event event_1 event_2
name
name_1 11
name_2 10
4)
In [369]: df.assign(v=1).pivot(index='name', columns='event', values='v').fillna(0)
Out[369]:
event event_1 event_2
name
name_1 1.01.0
name_2 1.00.0
Solution 2:
Option 1pir1
and pir1_5
df.set_index('name').event.str.get_dummies()
event_1 event_2
name
name_1 10
name_1 01
name_2 10
Then you could sum across the index
df.set_index('name').event.str.get_dummies().sum(level=0)
event_1 event_2
name
name_1 11
name_2 10
Option 2pir2
Or you could dot product
pd.get_dummies(df.name).T.dot(pd.get_dummies(df.event))
event_1 event_2
name_1 11
name_2 10
Option 3pir3
Advanced Mode
i, r = pd.factorize(df.name.values)
j, c = pd.factorize(df.event.values)
n, m = r.size, c.size
b = np.bincount(i * m + j, minlength=n * m).reshape(n, m)
pd.DataFrame(b, r, c)
event_1 event_2
name_1 1 1
name_2 1 0
Timing
res.plot(loglog=True)
res.div(res.min(1),0)pir1pir2pir3john1john2john3109.9483963.3999131.020.4783684.46046610.642113309.3505242.6811781.016.5892483.8476669.16890710011.4145363.0794631.018.0760404.2777529.94930530015.7695942.9405291.016.7458893.9454709.0692651000 26.8694512.6175641.012.7895703.2363907.2792053000 42.2295422.0995411.08.7166002.4298474.7858141000052.5716781.7160881.04.5975981.6919892.8004553000058.6447641.4698271.02.8187441.5350121.929452
Functions
pir1 = lambda df: df.set_index('name').event.str.get_dummies().sum(level=0)
pir1_5 = lambda df: pd.get_dummies(df.set_index('name').event).sum(level=0)
pir2 = lambda df: pd.get_dummies(df.name).T.dot(pd.get_dummies(df.event))
defpir3(df):
i, r = pd.factorize(df.name.values)
j, c = pd.factorize(df.event.values)
n, m = r.size, c.size
b = np.bincount(i * m + j, minlength=n * m).reshape(n, m)
return pd.DataFrame(b, r, c)
john1 = lambda df: pd.crosstab(df.name, df.event)
john2 = lambda df: df.groupby(['name', 'event']).size().unstack(fill_value=0)
john3 = lambda df: df.pivot_table(index='name', columns='event', aggfunc='size', fill_value=0)
Test
res = pd.DataFrame(
index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
columns='pir1 pir2 pir3 john1 john2 john3'.split(),
dtype=float
)
for i in res.index:
d = pd.concat([df] * i, ignore_index=True)
for j in res.columns:
stmt = '{}(d)'.format(j)
setp = 'from __main__ import d, {}'.format(j)
res.at[i, j] = timeit(stmt, setp, number=100)
Solution 3:
You are asking for the pythonic ways , i think in python this way is to use a technic called one-hot encoding this technic is well implemented in libraries likes sklearn and after one hot encoding you will need to group your dataframe by the first column and apply sum function.
here is a code :
import pandas as pd #the useful librariesimport numpy as np
from sklearn.preprocessing import LabelBinarizer #form sklmearn
dataset = pd.DataFrame([['name_1', 'event_1' ], ['name_1', 'event_2'], ['name_2', 'event_1']], columns=['name', 'event'], index=[1, 2, 3])
data = dataset['event'] #just reproduce your dataframe
enc = LabelBinarizer(neg_label=0)
dataset['event_2'] = enc.fit_transform(data)
event_two = dataset['event_2']
dataset['event_1'] = (~event_two.astype(np.bool)).astype(np.int64) #this is a tip to reproduce the event_1 columns
dataset = dataset.groupby('name').sum()
dataset.reset_index(inplace=True)
and the output is :
Post a Comment for "How To Convert A Column Of String To Numerical?"