How To Gather Dataframe Column Into Key Value Pairs As Row In Python
I'm trying to gather a pandas DataFrame column into a key value pairs and list it as a row in python. If we take the following DataFrame as example, I want to go from here: import
Solution 1:
Another solution using melt:
ipdb> pd.melt(df.rename(columns=lambda x: x.split('_')[-1]), var_name="year", value_name="value").dropna()
yearvalue02016200.012017300.0
Solution 2:
You can create MultiIndex
by split
and then reshape by stack
:
df.columns = df.columns.str.split('_', expand=True)
df = df.stack().reset_index(level=0, drop=True).rename_axis('year').reset_index()
#if necessary convertfloattoint
df.value = df.value.astype(int)
print (df)
yearvalue0201620012017300
If want use DataFrame
constructor use get_level_values
:
df.columns = df.columns.str.split('_', expand=True)
df = df.stack()
df_result = pd.DataFrame(OrderedDict({'year': df.index.get_level_values(1),
'value': df['value'].astype(int).values}))
print(df_result)
year value
0 2016 200
1 2017 300
Solution 3:
You could use rename
, stack
and reset_index
In [4912]: (df.rename(columns=lambda x: x.split('_')[-1]).stack()
.reset_index(level=0, drop=True)
.rename_axis('year')
.reset_index(name='value'))
Out[4912]:
year value
02016200.012017300.0
Solution 4:
Or using datar
:
>>> from datar.allimport f, NA, tribble, pivot_longer, everything, drop_na
>>> >>> df = tribble(
... f.value_2016, f.value_2017, f.value_2018,
... 200, 300, NA
... )
>>> df
value_2016 value_2017 value_2018
<int64> <int64> <float64>
0200300 NaN
>>> >>> pivot_longer(df, everything()) >> drop_na()
name value
<object> <float64>
0 value_2016 200.01 value_2017 300.0
Post a Comment for "How To Gather Dataframe Column Into Key Value Pairs As Row In Python"