Pandas Shift Column Data Upon Condition
I have dataframe which look like this. Name Val Rating 0 ABC 123 B + 1 DEF 234 B + 2 567 B- NaN 3 GHI 890 D but instead I want to shift the dat
Solution 1:
You can shift rows by boolean mask:
mask = pd.to_numeric(df['Name'], errors='coerce').notnull()
df[mask] = df[mask].shift(axis=1)
print (df)
Name Val Rating
0 ABC 123 B +
1 DEF 234 B +
2 NaN 567 B-
3 GHI 890 D
Detail:
print (pd.to_numeric(df['Name'], errors='coerce'))
0 NaN
1 NaN
2 567.0
3 NaN
Name: Name, dtype: float64
If really need replace index values to empty strings is possible create helper Series and reindex.
But this is not recommended because performance problem and possible some function with this index should failed.
i = df.index[~mask]
df.index = pd.Series(range(len(i)), index=i).reindex(df.index, fill_value='')
print (df)
Name Val Rating
0 ABC 123 B +
1 DEF 234 B +
NaN 567 B-
2 GHI 890 D
Solution 2:
df[df['Rating'].isnull()]=df[df['Rating'].isnull()].shift(axis=1)
print(df)
Output:
Name Val Rating
0 ABC 123B +
1 DEF 234B +
2 NaN 567B-
3 GHI 890 D
Edit:
df[df['Rating'].isnull()|df['Name'].isnull()]=df[df['Rating'].isnull()|df['Name'].isnull()].shift(axis=1)
print(df)
Solution 3:
Using isdigit:
df[df['Name'].str.isdigit()] = df[df['Name'].str.isdigit()].shift(axis=1)
Output:
Name Val Rating
0 ABC 123B +
1 DEF 234B +
2 NaN 567B-
3 GHI 890 D
Solution 4:
first define a function:
import numpy as np
def f1(row):
if not row.rating:
row.Rating = row.val
row.val = row.Name
row.Name = np.NaN
then use pandas.DataFrame.apply:
df.apply(f1,axis=1)
Post a Comment for "Pandas Shift Column Data Upon Condition"